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Summary

This report provides procedures for estimating Qmed in ungauged catchments.
Qmed estimation is especially important because Irish flood growth rates are
very slow, making Qmed weigh heaviiy in the calculation of design flood values.
The recommended procedure for Qmed estimation at sites for which there is no
data is to use or transfer daia from a nearby site, preferably upstream or
downstream from the site of interest. In cases where no suitable data transfer is
available the following equation can be used to estimate Qmed.

Rural Catchments

Following exhaustive searches for an optimum model structure the following
model is advocated for use in estimating Qmed at ungauged sites:

Omed =1.237X107° AREA*™ BFIs0ils "7 SAAR"*" FARL**" DRAIND"**
S1085%'% (1 + ARTDRAIN?)™**

The model has an r? of 0.909, Standard Error of 0.313 and a Factorial Standard
Error (fse) of 1.37. Qmed is estimated from seven catchment descriptors:
drainage area (km?) (AREA), catchment soil and geology index (BFlsoils),
average annual rainfall {mm) (SAAR), an index of flood attenuation by reservoirs
and lakes (FARL), an index of drainage density (DRAIND), the mainstream slope
(m/km) (S1085) and a measure of arterial drainage (ARTDRAIN2), taken as the
length of upstream network included in OPW scheme channels (km). The
descriptors BFlsoils and ARTDRAINZ are crucial in determining the response of
drained catchments while the descriptors DRAIND and S1085 are more
important in predicting Qmed in undrained catchments.

A simple interpretation of the model can be given as follows.

- Qmed increases with Area

- Qmed decreases as BFlsoils increases, therefore Qmed is greater on less
permeable catchments.

- Qmed increases with greater values of SAAR

- Qmed increases with FARL, meaning that it decreases for increased
attenuation

- Qmed increases with drainage density

- Qmed increases with mainstream slope

- Qmed increases with the extent of arterial drainage works on the river
network.

Approximate 68% and 95% confidence intervals for Qmed ¢an thus be given as;

68% confidence interval = (Qmed/fse, Qmedxfse)
95% confidence interval = (Qmed/fse?, Qmedxfse?)



Adjusting for Urbanisation

The rainfall runoff response of a catchment can be radically altered by
urbanisation where impervious surfaces inhibit infiltration and reduce surface
retention, while increases in surface runoff are combined with an increase in the
speed of response. The estimation of an adjustment factor was preferred over
deriving a separate model for Qmed in urban catchments due to the small
number of representative stations (35 in total). The adjustment derived is for
catchments that have undergone urbanisation and is not suitable for anticipating
the effects of planned urban developments:

UAF = (1+ URBEXT)"*

The model returned an r? (in €n space) of 0.300, a standard error of 0.735 and a
Factorial Standard Error of 2.085. The coefficient 1.482 has a standard error of
0.139. The model also has the advantage of decreasing to 1 when URBEXT
decreases to zero and returns a value of 2.793 when URBEXT reaches a
maximum of 1 (fully urbanised catchment).

Improving Model Predictions

While the model marks an improvement on the FSR approach for Ireland, with a
fse of 1.37; uncertainty is still large. Therefore it is advised that every effort is
made to increase confidence in predictions by using information from nearby
sites to improve model predictions. W.P. 2.2 recommends the use of donor sites
through exploiting downstream or upstream gauge(s) where available, with the
former being preferable. In the situation where analogue transfers are required
W.P. 22 recommends a regression adjustment transfer method. The
geostatistical mapping of residuals as a means of adjustment is put forward as a
viable option here. However, as always the local experience of a discerning
hydrologist is always more valuable and it is recommended that the choice of
adjustment procedure is made using this best available information where
possible. Ultimately, it is recommended that a gauge should be erected prior to
any major scheme proceeding to design stage.



1. Datasets Used

The estimation of the index flood for ungauged catchments is based on the
construction of an empirically based modei from two basic datasets; i) the index
flood, Qmed, (or the median annual flood) from gauged catchments and ii)
catchment descriptors for gauged catchments. The details of how these datasets
were derived are given elsewhere and so are not repeated here, rather an
overview of the characteristics of the data used in the model building process are
presented.

1.1 Median Annual Flood

The annual maximum series and values for Qmed were provided for a total of
206 gauging stations. Not ali of the stations provided were used, with some being
discarded following an exploratory data analysis and other questionable stations
being brought to light during model building. In total16 stations were omitted from
study leaving 190 stations for model building. Section 1.2 below identifies the
omitted stations and justifies the decisions taken. Where arterial drainage had
taken place within the record, the series in question was split into two and a
value for Qmed obtained for the pre-drainage period and post-drainage period. in
total 15 stations were divided into pre and post drainage records, giving a total of
205 stations (190 with 15 divided into pre and post drainage records) for model
building. Of this dataset 74 stations represent catchments with arterial drainage
and 131 stations with no drainage.

In relation to the quality of the data, Figure 1 shows the number of stations in
each quality category with 58 A1 stations, 78 A2 Stations and 69 B stations being
included for analysis. These stations have an average length of 31.07 years,
with a maximum of 65 and a minimum of 7 years. Figure 2 shows a histogram of
length of years of station records. There is evidence of bi-modality within the
distribution which is likely representative of the different lengths of the OPW and
EPA data sets. In total the full data series represents 6,350 annual maximum
events. Figure 3 plots a histogram of the Qmed values obtained from this record
with a mean of 64.11 cumecs, a minimum of 1.46 and a maximum Qmed of
414.17 cumecs. Figure 4 maps the distribution of gauges employed for model
building.

1.2 Stations Omitted

A total of 16 stations were omitted from the study for a range of reasons
highlighted below leaving 190 stations for model building.

St 26010 Riverstown, Clocne,
Suspicious outliers revealed that a partially developed OPW rating was
erroneously applied to the annual maximum series. Neither the series calculated
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Figure 3: Histogram of observed Qmed values for the full dataset of 205 stations

Figure 4; The distribution of stations (plotted at catchment centroids)




using OPW nor the Hydrologic rating should be used as they do not satisfactorily
reflect changes in the stage discharge relationship.

St 36027, Bellaheady, Ballyconnel Canal East, Lower Lough Erne

Extremely low outliers, the station name, and the fact that the station is recording
a typical annual maximum flood of only 25 cumecs from a nominal drainage area
of 1,501 km?, it can be questioned whether this represents a meaningful fiood
series for a natural river.

Stations, 25001, 25002, 25003 and 25005, Mulkear Catchment

Stations in the Mulkear catchment were omitted from analysis in line with
recommendations made by Joyce (2006, pers. comm.) where he highlights that
“this river was subjected to a District Drainage Scheme in the late 1920s and
early 1930s that protects large areas of land by extensive lengths of
embankments that are overtopped about once in five years. This means that the
catchment responds almost without storage attenuation for the smaller annual
maxima, including Qmed, and with massive storage attenuation for the larger
events.

Stations 19014, 19015, 19016 and 192031 in the Lee Catchment were omitted
because of the lack of an annual maximum series and corresponding Qmed
value.

Stations 31075, 34005 and 36020 had discrepancies in the metadata decriptions
with values for Qmed provided but no indication of series length from which
Qmed was calculated, in all cases a series length of zero was provided.

Stations 15003 (the Dinin at Dinin Bridge), 20006 (the Argideen at Clonakilty
WTW) and 30037 (the Robe at Clooncormick) were omitted at a later stage
during model building due to the exaggerated influence they were having on
model coefficients. Further inspection revealed criteria for omission. St30037 has
a very small Qmed (1.79 cumecs) for a catchment area of 210 km? , well below
any other catchment of a similar size. 5120006 again has an unusually smal!
Qmed and analysis of the annual maximum series reveals a large number of
years with missing months, raising suspicion that the maximum flow in a number
of years may have been missed. Finally, closer inspection of $t15003 revealed
quite a number of low outliers. Additionally, St15003 is noted to be an extremely
flashy catchment in a karst area (Castlecomber Plateau).

1.3 Correcting for Period of Record Effects
Due to natural year to year variability in climate there is a tendency for the flood
series to contain flood rich periods and flood poor periods. Consequently Robson

and Reed (1999) highlight that Qmed estimates obtained from short records can
be unrepresentative of the long term. In order to correct for this characteristic,
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short flood records were adjusted for period of record effects. Short records were
taken as those with a flood series of less than 20 years, of which there are 28 in
total. The procedure used for adjustment is the same at that outlined in Chapter
20 of the Flood Estimation Handbook which enables the transfer of information
from long record sites to short record sites. Category A1 and A2 sites that are
free from arterial drainage and have a record length of over 30 years were used
as donor sites. For each subject site, potential donor sites were selected as
those within a 50 km radius. The selection of sites was made through plotting ail
stations in a Geographical Information System and querying sites within the
specified distance. Only sites with at least 75% of overlap of annual maximum
data were considered. The correlation between the subject site and donor sites
were derived using Spearman’s rank correlation, stations revealing a low or
negative correlation coefficient were excluded from the adjustment process. The
number of donor sites identified ranged from 1 where stations completely
overlapped and where high correlation coefficients were derived (>0.8
Spearman’s Rank Correlation) to 5 where no outstanding donor was identified.
For all recipient sites, donors that completely overlap the period of record were
found.

In order to transfer information from the donor site to the subject site Qmed was
estimated at the donor site using all available data and then recalculated for the
period of overlap with the subject site. The ratio of these two measurements was
used as an estimate to determine the period of record effect at the subject site.
The Qmed estimate adjusted to the donor period was found by:

Mir)

D

OS . = QS( QQD J (Eqn. 1)
0

where QSad is the adjusted Qmed at the subject site, QS is Omed at the subject
site, calculated from its own available period of record, QD is Qmed at the donor
site, QDo is Qmed at the donor site for the period of overlap and M(r) is a
moderating influence on the donor site based on the strength of correlation with
the subject site and is given as:

M@p)=—2—"1 (Eqn. 2)

where no is the length of overlap between subject and donor sites and r is
Spearman’s rank correlation between annual maxima at subject and donor sites.
When only one donor with a very strong correlation coefficient was identified
(>0.8), the adjustment process was finished. However, where a number of donor
sites were identified, combined adjustment estimates were made by weighting
each donor based on distance from subject site, additional years of data provided
by the donor and the strength of correlation with the subject site. The weighting
factor is calculated as:

11



d
w= [I —ﬁjn" (n, —n, ) (Ean. 3)

where ngis the length of the donor site record and d is distance in km.

Table 1 details the stations which were adjusted for period of record effects while
Figure 5 shows the relationship between Qmed and adjusted Qmed values for all
sites. In the majority of cases only small adjustments to Qmed were made. The
largest adjustment is evident for st09035 (the Cammock at Kileen Road) with an
adjustment ratio of QmedAdj/Qmed of 1.306, increasing Qmed from 11.70
cumecs to 15.28.

Station Cat. Station name Rivername N Amax Qmed AdjQmed Diff %change Abs% AdjQmed/Qmed

st01055 B Mourne Beg Weir Moume Beg 9 2.70 2.80 0.10 3.59 3.59 1.036
st07006 A2 Fyanstown Moynalty 19 27.93 2520 -273 979 979 0.902
st7041 A2 Ballinteer Br. Boyne 7 165.00 165.28 0.28 0.17 017 1,002
st08007 B Ashbourne Broadmeadow 17 8.24 8.12 -0.12 143 1.43 0.986
st08009 A1 Balheary Ward 14 5.00 5.09 0.08  1.87 1.87 1.018
st08012 B Baliyboghil Stream 19 4.35 4,35 0.00 0.04 0.04 1.000
st09010 A1 Waldron's Br, Dodder 18 47.05 4664 -0.41 -0.87 0.87 0.981
5109035 B Killeen Road Cammock g 11.70 15.28 3.58 3062 3062 1.306
st10028 B Knocknamohil Aughrim 16 46,95 46,29 0866 -1.41 1.41 0.986
st13002 B Foulk's Mills Corock 19 7.0 6.98 -0.03 -048 048 0.996
st14034 A2 Bestfield Barrow 17 117.60 117.07 0.07 0.06 0.08 1.001
st15007 A2 Kilbricken Nore 13 53.45 5358 013 024 0.24 1.002
115012 B Ballyragget Nore 16 7711 76.18 -093 -1.20 1.20 0.988
st16051 B Clobanna Suir 13 2.85 282 -003 -08 088 0.989
st19046 B Station Road Martin 9 2995 2833 -162 -540 540 0.946
st22003 B Riverville Maine 8 98.01 98.03 0.02 Q.02 0.02 1.000
st22035 B Laune Bridge Laune 14 116.40 11042 -599 -514 5.14 0.949
st23012 A2 Ballymullen Lee (Kerry} 18 15.66 i5.83 0417 1.09 1.09 1.011
st25038 B Nenagh Toyne 17 39.30 3768 -1.62 -413 413 0.959
s5t26124 A2 Ballyganore Brosna 18 13.65 13.36 020 211 211 0.979
st25158 Ai Cappamore Bilboa 18 4388 3706 681 -1553 1553 0.845
st26014 B Banada Br. Lung 16 42,82 4218 063 -148 148 0.985
st26108 A2 Bellavahan Bridge  Owenure 156 57.32 55.82 -i40 -244 244 0.976
st30012 B Claregalway Clare 9 126.60 11697 -9.03 -7.17 717 0.928
st34010 B  Cloonacannana Moy 12 9542 99.21 380 398 3.98 1.040
5t34029 B Knockadangan Deel g 110.0¢  110.00 0.00 0.00 0.00 1.000
st36016 B Rathkenny Annalee 14 50.70 50.70 0.00 0.00 0.00 1.000
st39001._ B New Mills Swilly 17 4780 4705 074 -1586  1.56 0.984

Table 1: Stations which were adjusted for period of record effects
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Figure 5: Relationship between Qmed and period of record adjusted Qmed values for all
sites

1.4 Uncertainty in Qmed

Chapter four of the Flood Studies Update deals with uncertainty in Qmed at
gauged sites. In a random sample from a normal distribution the standard error

(se) of Qmed is given as:
se(Qmed) =~ 1.253c /N (Egn. 4)

Since Irish flood data are more skewed than the normal distribution then
se{Qmed) for flood data will be slightly greater. In Chapter 4 {(Section 4.3.1) an
approximate value for se{Qmed) is given as:

se(Omed) = 0.360med I NN (Eqn. 5)
The above is derived by adapting a larger multiplier of 1.30 and taking average

values of Cv and the ratio Omed /O for Irish A1 and A2 stations. Table 2 gives
the derived standard error of gauged values of Qmed at different record lengths.
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1 0.360
2 0.255
5 0.161
7 0.136
10 0.114
12 0.104
15 0.093
17 0.087
20 0.080
22 0.077
25 0.072

Table 2: Standard error of gauged values of Gmed at different record lengths

1.5 Catchment Descriptors

A total of 23 catchment descriptors were provided. Table 5 provides a summary
of descriptors for the 190 stations used in model building. The catchment
descriptors were all En transformed, where the lower range of a particular
descriptor can take a value of zero, transformation of En(1+ descriptor) was
taken. Where descriptors were provided as percentages (e.g. PASTURE,
URBEXT, FOREST, ALLUV, PEAT) they were converted to fractions and treated
in the same way. Additionally, catchment descriptors were subject to a factor
analysis to examine the dominant factors in estimating ¢{n{Qmed). Table 3
displays the results following varimax rotation. The first component is dominated
by catchment area, with rainfall, arterial drainage, attenuation and drainage
density emerging as the next major components, followed by the extent of
alluvium, potential evapotranspiration, catchment scil and geology and siope
respectively.

All variables were screened by calculating non-parametric correlations and
plotting against QMED (all in tn-space) to check for outliers, non-linear
relationships and for possible cross-correlation between the descriptors. Strong
correlations were found to exist between descriptors relating to catchment area
(including En(AREA), En{MSL), tn(NETLEN) and tn{STRMFRQ)), as such, the
traditional descriptor of DTM derived Area was selected and the remainder
removed from further analysis to avoid problems of collinearity. Similarly strong
correlations exist between En(SAAR), In(FOREST) and the aititude descriptors
due to the effect of topography on rainfall and dominant landuse type {with
forested areas largely located in upland areas of high rainfall), again the
dominant and traditional descriptor of £{n(SAAR} was selected.

14



Component 1 2 3 4 5 6 7 8 9
£n(AREA) 0.961

€n(MSL) 0.865

En(NETLEN) 0.986

€n(STMFRQ) 0.957

€n(DRAIND) 0.937

€n(S1085) -0.620 0.584
€n(SAAR) 0.700 0.307
€n(1+FOREST) 0.819

en(1+PEAT) 0.841

€n(1+PASTURE) -0.877

en(1+ALLUV) 0.851

En(SAAPE) 0.902

£€n(FARL) 0.870

£n(BFlsoils) 0.836
€n(TAYSLOPE) -0.603 0.629
en{1+ARTDRAIN) 0.968

€n(1+ARTDRAIN2) 0.961

Table 3: Principal Component analysis of in fransformed catchment descriptors for 190
stations

The slope descriptor £n{S1085) showed a stronger relationship with £n{Qmed),
subsequent exhaustive fitting of catchment descriptors in modelling tn{Qmed)
consistently selected £n(S1085) over £n(TAYLSO) with the latter being dropped
from further analysis. Furthermore £€n{$1085) also has a higher correlation with
En{Qmed) and is preferred for its simplicity over én(TAYLSO). Table 4 shows the
correlation matrix for the £n transformed descriptors for 190 stations, while Figure
6 shows the scatter plot matrix and correlations for the more dominant
descriptors.
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Descriptor Qmed Area MSL NETLEN STMFRQ DRAIND S1085 SAAR URBEXT FOREST PEAT PASTURE

Qmed 079 078 0.86 0.86 004 -0.36  0.27 0.04 0.22 0.26 -0 0y
Area 0.79 095 D96 0.87 036 071 U0s 0.16 003 a0y 013
MSL 0.78 095 0.94 0.87 0.26 -0.68 (¢ i) Qo0 o e
NETLEN 0.86 0.96 094 0.96 a3t «0.83 4 '3 15 0.15 Qs
STMFRQ 0.86 0.87 0.87 096 EORT % I 4 | by 114 0.26 <003
DRAIND v =036 -0.286 017 33 0.54 0.5 .14 0.29 0.25 -01.32
51085 -0.36 -0.71 -0.68 -0.63 -0.51 0.54 0.30 S| 0.29 NG -0.23
SAAR 0.27 1 ! 7 0.21 0.51 .30 -0.45 0.60 0.62 -0.60
URBEXT o016 i i 2 i . <045 -0.34 -0.34 0.25
FOREST 0.22 3 N ilL 0.29 0.29 0.60 -0.34 0.60 -0.70
PEAT 0.26 i 0.15 0.26 0.25 0.62 -0.34 0.60 -0.84
PASTURE 409 i 3 : 032 023 -080 0.25 070 -0.84

ALLUV 0.28 024 022 025 0.17 33 030 0.23 COR o 0.37 0.47
SAAPE - 1. -018  -0.14 -0.14 3 028 -0.31 0.20 0.14 -0.52 0.30
FARL -0.22 -0.27 0.26 -0.33 4 021 .036 020 0n3 036 0.32
BFlsoils S5 034 030 0.21 i1 -0.53 -0.45 -0.20 020 -0.21 0.20
ALTBAR 112 W06 -0.14 T 0.42 0.54 041 -0.23 0.58 014 -0.25
ALTMIN -0.34 018 -0.21 -0.25 0.35 -0.21 A1 05 -0.20 -1 1304 -0.03 008
ALTMAX 0.50 026 026 037 0.44 0.38 025 043 055  0.29 -0.35

1
ALTRANGE 0.53 0.27 0.28 040 0.48 0.40 0.26 0.43 303 0.53 0.28 -0.34
TAYSLOPE -0.3¢ -0.71 -0.69 -0.64 -0.57 0.48 0.89 047 401 020 LG -0.10

ARTDRAIN 13 ] 408 )1 1o «0.220 0,20 0.26 -043 -0.19 0.3
ARTDRAINZ 3 N )4 S04 D1y -019 0 -0.20 0.25 045 -0.21 0.33
Qmed 0.28 ] G2 1 -0.34 0.50 0.53 -0.34

Arga 0.24 -0.22 0.34 -0.16 -0.18 0.26 0.27 -0.71 &

MSL 0.22 018  -0.27 0.3¢ -0.14 0.21 0.2 0.28 -0.69

NETLEN 0.28 014 -0.26 0.21 g -0.25 0.37 0.40 -0.64

STMFRQ 017 014  -0.33 M ) €O -0.35 0.44 0.48 -0.57 s BN
DRAIND 50 1 y -0.53 0.42 -0.21 0.38 0.40 0.48 PRIE 2
51085 con 028 4.1 -D.45 0.54 003 0.25 0.26 0.89 -0.22 019
SAAR -0.30 431 -0.36 -0.29 0.41 -0.20 0.43 043 017 -0.20 «0.20
URBEXT 0.23 0.20 0.20 03 -0.23 =310 s (i) 03 0.26 0.25
FOREST -3 N6 014 002 -0.20 0.58 nriz 0.55 0.53 0.20 -0.43 -0.45
PEAT -0.37 -0.562 036 -0.21 014 NI 0.29 0.28 EYIREN -0.19 -9.21
PASTURE 0.47 0.30 0.32 0.20 .25 UL 0.35 -0.34 1 0.3 0.33
ALLUY 046 045 109 0.17 ne 0.24 0.26 13 315 RN
SAAPE 0.46 0.57 he! 0.18 -1.19 Ui 0.14 0.42 05 -0
FARL 0.45 0.57 -0.22 009 (U] 3 - 0.43 i1 0
BFisoils 10y -0.22 -0.25 32 AN N -0.46 an 0t
ALTBAR 017 0.18 -0.25 0.28 0.66 0.61 0.49 =0.42 -0.41
ALTMIN .. D19 ] 5 0.28 1 -0.22 4 -
ALTMAX 0.24 » 1 4 .66 11 0.99 0.16 -0.34 -0.36
ALTRANGE 0.28 0.14 i .61 -0.22 0.99 0.16 -0.32 -0.33
TAYSLOPE g 042 043 046 0.49 o 0.16 0.16 -0.18 -0.15
ARTDRAIN il ! g | -0.42 Bl 1 .34 -0.32 -0.18 0.98
ARTDRAIN2 11 186 i -0.41 - u -0.36 -0.33 0.15 0.98

Table 4: Correlation matrix for the {n transformed descriptors for 190 stations. Significant
correlations are shown in bold.
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1.6 Rural Qmed: Calibration and Validation Split

For the purposes of developing a model for Qmed only essentially rurai
catchments were used. All stations that have experienced urbanisation; those
with an URBEXT value of greater than 1.5% were extracted (35 in total) leaving a
rural dataset for estimating Qmed for rural catchments of 170 stations (15 pre
and post drainage records included). In order to fit and test the derived models a
split sample procedure was adopted. Given the practical applications of this work,
it was necessary to train models on as wide a range of observations as possible.
As such, an approximate 85%:15% split, with stations being randomly selected,
was used for calibration and validation respectively, with 25 stations being
retained for validation and excluded from model training. Therefore a dataset
consisting of 145 stations was used for model building.

2. Modelling Approach

Regression has long been used in hydrology to relate a desired flood quantile to
catchment physiographic, geomorphologic, and climatic characteristics (e.g.
Nash and Shaw, 1965; NERC, 1975). In the Flood Estimation Handbook (FEH)
parlance this is know as the catchment descriptor equation. The analysis is
typically performed using the power-form equation of the form:

ra ﬁ )83 ﬂp

O, =ax, "' x, "%, ... X (Eqn. 6)

where Q,is the flood quantile of interest, a is a constant, x, is the ith catchment
descriptor, g, is the ith model parameter and p is the number of catchment

descriptors. In this work the quantile of interest is the median annual flood which
represents the index flood. This form of model holds that changes in catchment
descriptors have a scaling effect on the index flood, with the degree of scaling
affected by the parameter exponent terms. Many different techniques are
available to estimate the model parameters. Linear regression is the most
common technique and involves linearising equation 6 through a logarithmic
transformation leading to the form:

(nQmed = tn(a)+ B fn(x,)+ B,¢n(x,} + Byén(x,)....0,¢n(x )} (Ean.7)

Writing the equation in this form gives a linear structure that allows the
application of standard multivariate statistical procedures. McCuen et a/. (1990)
highlight that using techniques such as ordinary least squares to estimate the
parameters of equation 7 can lead to an unbiased estimate of the index flood in a
logarithmic flow domain, however, the estimate will be biased in the real flow
domain. In dealing with this problem a number of authors have applied more
complicated procedures to avoid this issue such as non-linear and non-
parametric regression (e.g. Pandey and Nguyen, 1999). However, the use of
such techniques was not attempted here, with the more traditional approach of
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multiple least squares estimation being employed to fit the linear model. In
addition, the use of Artificial Neural Networks (ANNs) was also examined in light
of the impressive results achieved by Dawson et al. (2006) However, the
selected approach described below was found to outperform ANNs and so this
approach is not dealt with further here.

The catchment descriptor equation was fitted using the multiple least squares
regression techniques. Under muliiple least squares regression Equation 7 can
be written in vector notation as:

y :Xﬁ+e {Eqgn. 8)

where y is the vector of dependent variables, X is the matrix of independent
variables, f is the vector of regression coefficients and e is the vector of random
errors. These errors are all assumed to be e~ N(0,y°7), meaning that they are

uncorrelated, normally distributed with mean of zero and a variance of y*, which

is referred to as the model error variance. I is the identity matrix. Grover et al.
(2002) highlight that in hydrology the true value of y (the fiood quantile of interest)
is typically unknown, and there is therefore an error associated with its
estimation. Using notation developed by Stedinger and Tasker (1985), if $ is an

unbiased estimate of the flood quantile of interest then:
E[p]=» (Eqn. 9)
and
Var[p]=%  (Eqn. 10)

where X is the sampling covariance matrix associated with the estimate of 7.
Therefore equation 8 is written:

J=XB+u (Eqn. 11)

where v is a random vector of errors that are a combination of model and
sampling errors defined as:

Varful=A=71+3 (Eqn.12)
where Ais defined as the full variance covariance residual matrix , ¥”is a vector

of modelling errors and X is a matrix of sampling errors. The least squares
estimate for £ in equation 11 is determined by:
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B=(xTA"x) (XTA5)  (Ean. 13)
also known as the generalised least squares estimator.

in this study, three least-squares methods, namely ordinary, weighted, and
generalised, were applied to solve Equation 13. Ordinary least squares (OLS) is
the simplest method used to estimate the parameters and is suitable when the
sampling error in the data is small (£~0) and the error terms have equal
variances (homoscedastic) and are uncorrelated. The weighted-least squares
(WLS) procedure for hydrologic regression introduced by Tasker (1980) accounts
for the sampling error introduced by unequal record lengths. Unequal record
lengths mean that the sampling errors of the observations (Qmed) are not equal
(heteroscedastic) and the assumption of constant variance in OLS is no longer
valid. In this approach a weighting term, proportional to record length (the square
root of record lengths) was used to represent the sampling error following
Weisberg (1980). Generalised least squares (GLS), introduced to hydrological
application by Stedinger and Tasker (1985), is an extension of WLS which also
accounts for cross-correlation of flood data between sites. In applying GLS it was
assumed that the between site correlations in annual maximum flood data
provide a reasonable approximation to the correlations in the regression errors.
As such, intersite correlation was assessed and found to be best represented by
exponential decay with distance, with inter-site correlation falling to approximately
0.5 at a distance of 50km (Figure 8). An exponential spatial correlation was
incorporated into the GLS approach. While it is obvious from Figure 8 that this is
an approximation only, it does allow recognition of the possible intersite
correlation. Stations with an intersite correlation of 1 are the 15 stations that were
divided into pre and post drainage records.

From the modelling conducted it was found that the assumptions of the OLS
approach; normally distributed residuals, equal variance and uncorrelated
sampling errors in the data were satisfied and therefore the simpler approach
was adopted for further use. The extension of the methodology to WLS and GLS
returned very minute changes in model performance and parameter values and
are not reported here.
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Figure 8. Fitted model for inter-site correlation . Correlation falls to 0.5 at approximately
50km.

2.1 Selecting Catchment Descriptors

Selecting the combination of catchment descriptors to be included in the final
QMED model was a lengthy and iterative process and as a consequence not
every stage of the procedure is reported here. An exhaustive search was used to
select the best 5 sets of variables by fitting every combination of descriptors up to
a maximum of nine independent variables using the sites selected for the
calibration dataset. The fitted models were assessed based on size, the
coefficient of determination (r?) and the RMSE (Root Mean Square Error) of
prediction, their hydrological realism and the behaviour of model residuals. Table
6 shows the three best fiting OLS models using from one to nine catchment
descriptors and the resulting r* values.

2.2 Choosing a Rural Qmed Model

From the results obtained from the exhaustive search the most appropriaie
model to represent rural stations in the calibration set was deemed to be a seven
variable model. From Table 7 and Figure 9 below, the addition of descriptors
eight and nine result in insignificant changes in the coefficient of determination
and add little to the model, while also increasing concerns over multi-collinearity.
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N Descriptors . r’Change F Change Sig.F Change

1 0.786 0.618 0.615 0.629 0.618 220.574 0.060
2 0.890 0.783 0.780 0.465 0175 119.094 0.000
3 0.918 0.843 0.839 0.407 0.050 44.254 0.000
4 0.936 0.876 0.872 0.362 0.033 37.538 0.000
5 0.945 0.893 0.889 0.337 0.017 22118 0.000
6 0.951 0.903 0.899 0.322 0.010 14.596 0.000
7 0.954 0.809 0.905 0.313 0.006 8.721 0.004
8 0.954 0.911 0.905 0.312 0.001 2.051 0.154
9 0.955 0.911 0.905 0.312 0.001 1.187 0.278

Table 7: Performance diagnostics and significant F change for the addition of each
independent variable
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Figure 9: Improvement of R? for a model size of one to nine variables
As a result the following seven variable model was selected for use for all rural
catchments: (Egn. 14)

en{Qmed)= -11.300+0.937 tn(AREA)-0.922¢n(BFlsoils)+1.306 én(SAAR)
+2.217€n(FARL)+0.341{n(DRAIND)+0.185(n(S1085)+0.408¢n(1+ARTDRAIN2)

The model has an r* of 0.909 and Standard Error of 0.313 (Factorial Standard

Error of 1.37). Figure 10 plots the fitted and observed Qmed values and shows a
good fit with little evidence of heteroscedacisity.
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The power function form of the model is given as: (Egn. 15)

Omed =1.237X107 AREA® BFIs0ils ™ SAAR"*® FARL™" DRAIND**
S1085%'% (1 + ARTDRAIN2)***

95% Confidence Interval Collinearity Statistics
g Std. Error Beta Lower Upper Tolerance VIF

Constant -11.300 1151 -9.818 0.000 -13.578 -9.024
en(Area) 0.937 0.032 1.021 20.456 0.000 0.874 0.999 0.556 1.800
&n(BFlsoils) -0.922 0.169 -0.184 «5.457 0.000 -1.256 -0.588 0.587 1.703
£n(SAAR) 1.306 0.i73 0.291 7.542 0.000 0.964 1.648 0.449 2235
en(FARL) 2217 0.332 0.220 6.669 0.00G 1.56% 2.874 0.615 1.625
£n(DRAIND) 0.341 0.070 0.145 4.853 0.000 0.202 0479 0.744 1.344
£n(S1085) 0.185 0.042 0.178 4. 408 0.000 0102 0268 0.408 2453
en(1+ARTDRAIN2) 0.408 0.138 0.080 2,553 0.004 9.135 0.681 0.902 1.108

Table 8: Coefficient diagnostics and collinearity statistics for the rural {n(Qmed) seven
variable model.

Results from Table 8 show that all coefficients are significant at the 0.05 level.
The standardized coefficients (Beta in the table) highlight the relative contribution
of each descriptor in describing tn{Qmed). {n{Area) is by far the most important
predictor, followed by £n(SAAR), £n{FARL) and £n(BFlsoils). In order to assess
issues of multi-collinearity in the model two statistics were incorporated; namely
the Tolerance and the Variance Inflation Factor (VIF). The Tolerance is the
percentage of the variance in a given catchment descriptor that cannot be
explained by the other descriptors. Small tolerances therefore show that a large
amount of the variance in a given descriptor can be explained by others, The
Variance Inflation Factor also measures the impact of collinearity among the
variables in a regression model. The Variance Inflation Factor is 1/Tolerance, it is
always greater than or equal to 1. Values of VIF that exceed 10 are often
regarded as indicating multicollinearity, but in weaker modeis values above 2.5
may be a cause for concern.

From Table 8 good tolerance values are displayed for each of the catchment
descriptors. The VIF is less than two for all but €n(SAAR) and £n(S1085)
indicating the correlation between these two descriptors (both high rainfail and
high stream slope tend to be associated with high ground, with lower rainfall and
shallower slopes at lower elevations). However, the healthy tolerance values
supports the retention of both descriptors in the model and suggests that a
considerable proportion of the contribution of tn(S1085) is not already
represented by tn{SAAR) in particular.

A simple interpretation of the model can be given as follows.
- Qmed increases with Area
- Qmed decreases as BFlsoils increases, therefore Qmed is greater on less
permeable catchments.
- Qmed increases with greater values of SAAR

26



- Qmed increase with FARL, meaning that it decreases for increased
attenuation

- Qmed increases with drainage density

- Qmed increases with slope

- Qmed increases with the extent of arterial drainage works on the river

network.
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Figure 10: Comparison of Observed and Predicted Qmed for the selected rural model for
145 calibration stations.

2.3 Investigating Model Residuals

As mentioned above the OLS approach to judging and testing the model requires
that the residuals are normally distributed with constant variance. From the
normal probability plot and £n{Residuals) Vs fitted ¢n(Qmed) in Figure 11 the
residuals appear to be well behaved, with a good visual fit to the assumed normal
distribution, even at the tails of the distribution with little evidence of changes in
variance with increasing £n(Qmed). Figure 12 maps the residuals from the 7
variable rural Qmed model, from the graduated symbols there is some
semblance of a tendency to overestimate £n{(Qmed) in the midiands and west,
and underestimate in east and south.

In analysing the residuals further Figure 13 shows scatter plots of the selected
rural model against the seven individual catchment descriptors selected. In these
plots interest centres on;

27




- Examining the relationship between residuals and catchment descriptors
to assess the success of the model in capturing the range of catchment
types represented.

- ldentifying the possible presence of a curved pattern in the residuals when
plotted against any descriptor. Curvature would indicate non-linear
relationships and suggest the need to include additional transformations of
the descriptors in model building.

In terms of curvature, the residual plots are well behaved with little evidence of
non-linear relationships between catchment descriptors and residuals. In
examining model performance for the range of catchment types, particular
interest was directed at how well the model performs for permeable catchments,
those with a high BFIscils index, and secondly for the range of catchment areas
represented. In relation to catchment area, the dataset used for calibrating or
training the mode! is dominated by larger catchments. From the spread of
residuals for the tn{Area) plot in Figure 13 it is evident that the selected rural
model provides a better fit to larger catchments, in line with the prevalence of
such catchments in the training set. Small catchments are less well captured as
represented by the spread in residual values. Kjeldsen et al. (2008) having found
similar issue with an update of the FEH Qmed model highlight that this may be a
cause for some concern considering that in practical terms the Qmed model is
most often applied to catchments whose areas are in the lower range of those
presented in the training set, and indeed somewhat smaller.
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Figure 11: Normal QQ plot and £n{residuals) V's Fitted £n{Qmed) for the selected rural
model.
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2.4 Validation Performance

In order to validate the rural tn(Qmed) model, the model performance was
assessed for stations that were held blind to the training process. The 25
randomly selected stations for validation give a good overall representation of
characteristics of stations used in model training and provide a relatively robust
method of assessment. Figure 14 shows the resulting scatter plot between
observed Qmed and predicted Qmed, with results being more than satisfactory.
For these ‘blind’ stations an r* of 0.906 is obtained. Again, the lack of evidence
for heteroscedacisity is reassuring that the OLS approach is legitimate for
modelling En(Qmed). Concerns over the poorer model performance for small
catchments are relaxed following validation. From the histogram in Figure 15 it is
evident that the validation stations contain a good degree of spread in relation the
range of caichment areas represented with 16 of the stations having a catchment
area of less than 300 km? 8 stations with an area of less than 200 km? and 5
with an area of less than 100 km2 The model performs well for the smaller
catchments in the validation set with an r* of 0.920 being returned for the 16
catchments of less than 300 km?

Predicted Qmed (cumecs)
\
A
\

2 4 8 16 32 64 128 25 500
Observed Qmed {(cumecs)

Figure 14: Relationship between Observed and Predicted Qmed for the validation stations
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Figure 15: Range of catchment sizes represented in the validation set

2.5 Assessing Model Robustness

2.5.1 Robustness to Influential Stations

Given the importance of assuring model robustness stringent tesis were
performed to make sure that the omission of certain catchments did not impact
significantly on model coefficients. This is always going to be a concern when a
seven variable model is fitted to a dataset of 145 observations. In order to test
the robustness of parameters to individual catchments the coefficients of the rural
tn{Qmed) model were bootstrapped and jackknifed.

in conducting the bootstrap resampling, 1000 new samples, each of the same
size as the observed data, were drawn with replacement from the observed data.
The model coefficients were first calculated using the observed data and then
recalculated using each of the new samples, yielding bias corrected and adjusted
(BCa) percentile distributions of the model coefficients. In order to assess the
influence of individual catchments in deriving the final model coefiicients,
jackknife resampling was employed to calculate model coefficients for the n
possible samples of size n-1, each with one station left out. In testing the
sensitivity of model coefficients to the data they were trained on, the modei was
held to be overly sensitive if the removal of any individual catchment or group of
influential catchments from the training dataset resulted in new coefficients
becoming insignificant or falling outwith the 95% confidence intervals of the BCa
percentiles. Figure 16 shows the normal QQ plots of the bootstrap resampled
model coefficients, while Figure 17 shows the absolute relative influence of
individual observations in model formulation. Observations with an absolute

32



relative influence of greater than two were selected for further testing. In testing
the sensitivity of each parameter the model was rerun with each of the influential
observations omitted sequentially without replacement and changes in parameter
significance were observed. Table 9 shows the bootstrapped BCa percentiles for
each coefficient. From the analysis conducted the mode} was not found to be
overly sensitive to individual observations. Even when all influential points were
removed when assessing individual coefficients they remained significant and
well within the BCa percentiles.

Bca Precentiles 2.50% 5% 95% 97.50%
Intercept -13.697 -13.255 -9.729 -9.411
€nArea 0.883 0.871 0.984 0.991
£nBFlsoils -1.210 -1.170 -0.454 -0.381
£nSAAR 1.050 1.088 1.634 1.705
enFARL 1.654 1.773 2.765 2.865
£nDRAIND 0.259 0.286 0.649 0.698
£nS1085 0.081 0.094 0.230 0.242
€n(1+ARTDRAIN2) 0.123 0.177 0.633 0.677

Table 9: Bootstrapped BCa percentiles for each coefficient
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Figure 16: Normal QQ plots of the bootstrap resampled model coefficients
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Figure 17: Influence plot for individual stations in determining model coefficients

2.5.2 Robustness to spatial drift in model coefficients

The underlying assumption of the global regression method, as undertaken here
using the OLS technique, is that the relationship under study is spatially constant,
and thus, the estimated parameters remain constant over space. However, in
most cases the relationship varies in space. Geographically Weighted
Regression (GWR) is a technique that expands standard regression for use with
spatial data (Fotheringham et al., 2002). A technigue like GWR assesses local
influences, allowing for a spatial shift in parameters and a more appropriate fit.
Although the technique does not allow extrapolation beyond the region in which
the model was established, it does allow the parameters to vary locally within the
study area and may provide a more appropriate and accurate basis for
descriptive and predictive purposes. In the context of this work the GWR
technique was employed to test if model coefficients are spatially constant. GWR
works as follows.

A global regression model can be presented as:

y= ﬁo(y,v)+ ﬁl(y,v)xl +.o.+ ﬁn(y,v)xn +£ {Eqn. 16)
where (u,v) denotes the coordinates of the samples in space. In Geographically
Weighted Regression, the parameter estimates are made using an approach in

which the contribution of a sample to the analysis is weighted based on its spatial
proximity to the specific location under consideration. Thus the weighting of an
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observation is no longer constant in the calibration but varies with different
locations. Data from observations close to the location under consideration are
weighted more than data from observations far away. The parameters are
estimated from:

Bluv)= (X W)X X W (uv)y  Eon 17y

where B(u,v)represents an estimate of 8, W(u,v) is the weighting matrix which
acts to ensure that observations near to the location at which the parameter
estimates are to be made have more influence on the analysis than those far
away. X is a matrix of independent variables. Several methods have been
proposed fo determine the weighting matrix. For fixed kernel size with a
Gaussian function, Wjj (the weight of the specific point j in the space at which
data are observed to any point i in the space from which parameters are
estimated) can be represented as a continuous function of dij, the distance
between jand

Wy. = exp{— {Eqn. 18)

]

where b is referred to as the bandwidth. An alternative kernel that utilizes the bi-
square function can have Wij as:

T (1= (d/BY]  d; <b
# 0 otherwise

{Egn. 19)

Fixed kernels in regions where data are dense may suffer from bias when the
kernels are larger than needed. When the kernels are smaller than needed, they
may not estimate the parameters reliably where data are scarce, thus spatially
varying kernels have also been proposed. Parameter estimation in GWR is highly
dependent on the weighting function of the bandwidth of the kernel used. As the
bandwidth increases, the parameter estimates will tend to the estimate from a
global model. The selection of the weighting function and bandwidth can be
determined using a cross validation approach. In this work GWR was deployed
using an adaptive bi-square kernel with the selection of weighting functions and
bandwidth being based on the cross validation approach.

Table 10 below shows the resulis of the tests for spatial stability in model
parameter coefficients derived for each independent variable in the rural
tn(Qmed) model. Evident from the results is that the majority of parameter
coefficients in the model are indeed spatially constant, with the exception of
en(FARL). Figure 18 maps the variation in the En(FARL) coefficient and suggests
that the coefficient has higher values in the east and north west of the country
and lower values particularly around the upper Shannon basin and the west.
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Figure 18: Spatial variation in the FARL coefficient as interpolated from GWR
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Parameter P-value Significance

Intercept 0.140 nfs
In(Area) 0.840 n/s
£n(DRAIND) 0.160 n/s
£n(S1085) 0.240 nis
€n(SAAR) 0.130 n/s
£n(FARL) 0.050 *

£n(BFlsoils) 0.360 nfs
£n(1+ARTDRAIN2) 0.860 n/s

Table 10: Results of test for spatial variability in the parameters of the in{Qmed) 7 variable
model. * represents significance at the 0.05 level.

2.6 Uncertainty in the Qmed model

In order to express uncertainty in the estimate of Qmed derived from the rural
model confidence intervals can be constructed using the factorial standard error
(fse) reported. The confidence intervals give an indication of how good an
estimate of Qmed is likely to be. Given the lower factorial standard error reported
here in comparison to the Flood Studies Report equation, this update is taken to
mark an improvement in estimating Qmed from catchment descriptors. Robson
and Reed (1999) highlight that it is usual to consider the uncertainty in Qmed in
terms of the multiplicative error (i.e. the ratio between the true and estimate
value). Multiplicative errors can be estimated from the factorial standard error
which is the exponential of the standard error on the £n scale.

When it can be assumed that the residuals on the £n scale are normally
distributed, as is the case here, confidence intervals can be taken as proportional
to the estimated value. Approximate 68% and 95% confidence intervals for Qmed
can thus be given as:

68% confidence interval = (Qmed/ise, Qmedxfse) (Egn. 20)
95% confidence interval = (Qmed/fse’, Qmedxfse?)  (Eqn. 21)

Consider the example where Qmed is predicted at a location with catchment
descriptors: Area=197 km? BFlyis=0.67, SAAR=1014.7 mm, FARL=1.00,
DRAIND= 0.97, $S1085= 1.84 m/km and ARTDRAIN2= 0.78 km.

The resulting estimates of Qmed and upper and lower bounds for both the 68 per
cent and 95 per cent confidence intervals are shown in Table 11.

68% 95%
Predicted Qmed fse Lower Upper Lower Upper

29.786 1.370 21.742 40.807 15.870 55.905
Table 11: Uncertainty bounds of prediction using the rural tn{Qmed) model.
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3. Investigating the effects of Arterial Drainage

Given that arterial drainage is such an important facet of Irish hydrology and the
fact that a significant number (50} of the rural catchments have been subjected to
arterial drainage works, the rural dataset was partitioned and subjected to further
tests to assess the potential of:

- Making further improvements to modelling Qmed in rural catchments by
deriving a specific model for use with catchments that have undergone
arterial drainage (with drainage) and those that have not (undrained).

- To assess in more detail the impact that arterial drainage has on Qmed
and to understand the descripfors involved in capturing this response.

The rural dataset was partitioned into 95 no-drainage stations and 50 post-
drainage stations.

3.1 Undrained Stations

in line with the methodology described for deriving the rural model above, the
undrained stations were subject fo an exhaustive search to derive the best
combination of catchment descriptors for model building. Following this process a
6 variable model was selected, details of which are given in Table 12. This is
similar in make up to the rural model, with only £n{1+ARTDRAINZ2) being omitted.
This result gives confidence to the manner in which en{1+ARTDRAINZ2) indexes
drainage and in the meaningfulness of the other six variables.

However, there are substantial differences in model coefficients with an increase
in the En(BFlsoils) coefficient. Also of note is the fact that the importance of
tn(BFlsoils) is also reduced when viewed in terms of the standardised coefficient
(Beta in Table 12), with En(DRAIND) having a greater contribution. The
coefficients of tn{SAAR), £n(DRAIND), en(S1085) and £n{FARL) all increase
relative to the all rural model, while only ¢n(AREA) and the Constant reveal a
decrease. Overall the model provides good results with an r? of 0.892, Standard
Error of Estimate of 0.315 and a Factorial Standard Error of 1.37. From the model
diagnostics, the OLS approach to fitting the model is again acceptable with
tn({residuals) being normally distributed and showing litlle evidence of
heteroscedacisity. Figure 19 plots the observed versus predicted Qmed values
for the undrained stations. The linear £n reduced form of the model is provided
below with En(Qmed,q4) representing the undrained model:

en(Qmed.q)= -11.145+0.910tn(Area)-0.590¢n(BFIsoils)+1.328en(SAAR)
+2.762En(FARL)+0.477¢n(DRAIND)+0.214¢n(S1085) (Eqn. 22)
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95% Confidence Interval  Collinearity Statistics

Std. Error Sig. Lower Upper Tolerance VIF

Constant -11.145 1.441 -7.737 0.000 -14.008 -8.283

tn(Area) 0.910 0.043 1.054 21.337 0.000 0.825 0.995 0.501 1.996
€n(BFIsoils) -0.580 0.214 -0.132 -2.758 0.007 -1.015 -0.165 0.535 1.869
€n(SAAR) 1.328 0.220 0.352 6.026 0.000 0.890 1.766 0.358 2,794
en(FARL) 2.762 0.407 0.310 6.783 0.000 1.953 3572 0.586 1.707
€n(DRAIND) 0.477 0.118 0.183 4.032 Q.000 0.242 0.712 0.582 1.690
€n(S1085) 0.214 0.053 0.237 4.070 0.000 0.110 0.319 0.362 2,765

Table 12: Coefficient diagnostics and collinearity statistics for the undrained {n{Qmed) six
variable model,
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Figure 19: Observed Vs Predicted Qmed for the undrained model.

3.2 Stations with Drainage

The impact of arterial drainage upon the incidence of flooding downstream has
long been a source of controversy with the opposing points of view well
highlighted by Robinson (1990). In the data provided for the Flood Studies
Update there are 15 stations with pre and post drainage records, the Qmed
values for each are presented in Figure 20. From this graph it is evident that
following arterial drainage there are substantial increases in Qmed at all but four
stations. The factorial change in post drainage Qmed relative to pre drainage
records is provided in Table 13. From this table arterial drainage has a
considerable range of impacts between catchments with the majority showing
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substantial increases, over 100% in both stations 07010 and 30004. At the other
extreme, station 07007 shows a slight reduction in Qmed, while stations 25017
and 30061 show very slight or no changes in Qmed following drainage. In order
to try to understand these differences the factorial change was correlated with
En{SAAR) and £n(BFlsoils). While ncne of the correlations were significant an
interesting relationship is evident with the:

- Change in Qmed following drainage increasing with rainfall.
- Change in Qmed following drainage increasing as BFlsoils decreases, or
more simply, the change is greater for less permeable catchments.

400

st

Post Drainage Qmed

+ 10
22001
3 = u
T T T T T T
0 100 200 300 400 500

Pre Drainage Qmed

Figure 20: Comparison of Qmed for pre and post drainage records for the same stations

In order to fit a regression (OLS) model to the post drainage dafa, again the
exhaustive regression approach was employed. The final model selected is
presented below with model coefficients and diagnostics provided in Table 14
and Figure 21. An excellent model fit is obtained with an r* .936, standard error
of estimate 0.318, and a Factorial Standard Error of 1.37:

En(Qmedy)= -11.214+0.976En(Area)-1.780Ln(BFIscils)+1.230{n(SAAR)
+1.328tn(FARL) {Eqn. 23)

40

SN



()

Station  Pre (cumecs) Post (cumecs) Factorial Change

st03051 21.500 40.100 1.865
st07002 17.810 19.220 1.073
st07003 12.710 21.870 1.721
st07005 86.100 104.880 1.219
st07007 37.150 35.700 0.961
st07010 32.870 70.720 2.152
st07012 149.610 265.860 1.777
st24001 80.840 114.590 1.417
st24004 39.270 62.410 1.589
st25017 414.170 414.170 1.000
st26012 29.610 47.680 1.610
st30004 42.300 90.340 2.136
st30005 22.880 36.780 1.608
st30061 247.970 250.070 1.008
st35011 86.710 132.230 1.525

Table 13: Factorial change in Qmed for post drainage periods relative to the pre-drainage
Qmed

It has been suggested that this level of fit may be brought about by the fact that
catchments that have undergone drainage are of a similar ilk and thus there is
less variance for the model to capture. (Reed, pers. comm.). While the
diagnostics confirm the good behaviour of the residuals and the confirmation of
the assumption of the modelling approach, Table 14 reveals some interesting
results. Firstly, the negative coefficient for ¢n(BFlsoils) is almost three times as
large as in the undrained model, highlighting the importance of ¢n(BFlsoils) in
modelling catchments with drainage. Furthermore the tn(FARL) coefficient is
much reduced in line with drained catchments experiencing a faster runoff
response. The {n(SAAR) exponent is also higher as, logically, it is wet
catchments that are normally drained. The coefficients are very much in line with
the findings from the observations described above.

95% Confidence Interval  Collinearity Statistics

B Std. Error Beta t Sig. Lower Upper  Tolerance VIF
Constant -11.213 2.088 -5.369 0.000 -15.420 -7.007
{n(Area) 0.976 0.043 0.961 22.688 0.000 0.8%0 1.063 0.789 1.268
€n(BFlsoils) -1.780 0.283 -0.281 -6.299 0.000 -2.349 -1.211 0.711 1.406
£€n(SAAR) 1.230 0.309 0.162 3.981 0.000 0.607 1.852 0.856 1.168
£€n{FARL) 1.328 0.610 0.106 2179 0.035 0.100 2.556 0.601 1.665

Table 14: Coefficient diagnostics and collinearity statistics for the drained £n{Qmed)
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Figure 21: Observed Vs Predicted Qmed for the drained model.

3.3 Choosing a general purpose model

With three different and acceptable models derived for i) all rural catchments, ii)
undrained and iii) drained catchments, the problem of which model to use is
raised. In order to test the drained and undrained models for £n(Qmed), both
were assessed on their ability to predict observed En{Qmed) for the validation
stations. The validation set contains 17 undrained stations and 8 drained
stations. Included within the drained stations are; st07002, st07005 and st35011
which have experienced a 7.29, 21.92 and 52.5 per cent increase respectively in
Qmed following drainage. Table 15 shows the success of both partitioned
models and the all rural model in validation. For comparison the all rural model is
run for both the sets, i.e. both the drained model and the all rural model are used
to predict £n(Qmed) for the 8 post drainage stations in the validation set. From
the results the drained model only marks a slight improvement on the all rural
model with an r? difference of only 0.043. Additionally, the all rural model
performs marginally better than the undrained model for the 17 undrained
stations in the validation set. This is likely due to the fact that all of the descriptors
selected for the partitioned models are present in the all rural model, with the
addition of £en(ARTDRAINZ2).
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tn(Qmed) Model

Dataset Rural Undrained Drained
All Stations 0.906
Undrained 0.915 0.898

Drained 0.848 0.891

Table 15: Comparison of each derived mode! for stations in the validation set

In order to assess the overall improvement in performance by partitioning the
dataset the Standard Error of Estimate (S.E.E.) for the all rural model was
compared with the combined S.E.E. of the partitioned models. The combined
S.E.E. was caiculated as:

SEE = |2 (Eqn. 24)

n=-2m-2

where ss is the residual sum of squares, n is the number of stations and m is the
number of independent variables. The combined partitioned models have a
S.E.E. of 0.329, higher that the rural mode! fitted to the 145 drained and
undrained stations together (S.E.E 0.313). In light of this finding, along with the
less complicated approach of using a single model, the all rural model for
En{Qmed) is advocated for general operational use.

Additionally, from these results it can be suggested that in the all rural model the
descriptors £n{BFlsoils) and En(ARTDRAIN2) seem to be crucial in determining
the response of post drainage catchmenis whiie the descriptors £n(DRAIND) and
tn{S1085) are more important in predicting £n(Qmed) in catchments that have
not undergone drainage.

4. Adjusting the selected model for Urbanisation

The rainfall runoff response of a catchment can be radically altered by
urbanisation where impervious surfaces inhibit infiltration and reduce surface
retention, while increases in surface runoff are combined with an increase in the
speed of response. In assessing the effects of urbanisation it is the change in
catchment response that is sought, with the rural model, derived above, assumed
to be capable of predicting this response for the type catchments in the dataset.
Therefore the aim of this task is to produce an adjustment factor that can be used
to augment the performance of the rural model for catchmenis that have
undergone urbanisation. As was highlighted earlier catchments with an urban
extent of greater than or equal to 1.5% (URBEXT=z 0.015) were excluded from
the development of the rural £en{Qmed) model. The estimation of an adjustment
factor was preferred over deriving a separate model for Qmed in urban
catchments due to the small number of representative stations (35 in total). The
adjustment derived is for catchments that have undergone urbanisation and is
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not suitable for anticipating the effects of planned urban developments (Robson
and Reed, 1999).

Figure 22 shows the results for predictions of the rural Qmed model on the
catchments identified as being urban. While it is difficult to extract a definitive
influence of urbanisation, with 20 catchments showing an underestimation and 15
showing an overestimation, there is a tendency for more pronounced
underestimation, particularly in catchments where URBEXT is large and area is
small, i.e. a large proportion of the catchment is urbanised. From Figure 22 the
rural model substantially underestimates Qmed for st09011 (The Slang at
Frankfort, area 5.46km? and urban extent of 68.33%), st10022 (Cabinteely River
at Carrickmines, area 12.94km?, urban extent of 29.72%), and st08005 (Sluice
river at Kinsaley Hall, area 9.17km? and urban extent 25.01%). This is due to the
impact of urbanisation on catchment response where Qmed in urban catchments
is likely to be enlarged relative to otherwise similar rural catchments due to the
faster response, improved drainage in urban areas and less permeability.
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Figure 22: Performance of all rural model in predicting Qmed in urbanised catchments

Given the difficulties in fitting an urban adjustment to the rural model when no
clear impact of urbanisation is evident a matched analysis was conducted in
which catchments that were similar to the urban dataset in all but extent of
urbanisation were identified and the performance of the rural model was
assessed for these. In order to selected matched catchments a dissimilarity
matrix was produced using In(Area), £n{SAAR), {n(BFlsoils) and {n{FARL) to
judge similarity based on a calculated Euclidean distance. From Figure 23 the
rural model is judged to perform well on the matched catchments with an ? of
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0.871, indicating that the model is capable of modeling the type of catchments
that are likely to be urbanised. Once again there is no clear indication of over or
underestimation. Figure 24 shows the comparison of key descriptors for both the
urban and matched rural datasets, with the matched dataset replicating the urban
dataset well.
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Figure 23: Performance of the all rural modei for ‘matched’ rural catchments (some
matched catchments used more than once)

Despite the difficulties in extracting a clear fingerprint of urbanisation, effort was
made to derive an adjustment factor for urbanisation that could be used to scale
up the rural model results using the form:

QOmed = UAFQmed {(Egn.25)

rural
where UAF is an urban adjustment factor that describes the proportional increase
in Qmed caused by urbanisation, and Qmed,..y is the rural estimate for Qmed
explained above. The calculation of the UAF was approached in a similar way to
the methods described in Chapter 18 of the FEH (1999), where a separate model
is derived for describing UAF. UAF was constrained to have a minimum of 1 due
to the fact that urbanisation is unlikely to reduce Qmed. For each of the 35 urban
catchments, UAF was estimated by:

UAF = 2" (Eqn.26)
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where Qmed is the observed value, and Qmed..« is that predicted by the 7-
variable rural model. UAF was then £n transformed and its relationship with
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Figure 24: Comparison of key descriptors for both the urban (black) and matched rural
{red) datasets for a total of 35 stations.

catchment descriptors examined. Figure 25 shows the scatter plot matrix
comparing (n{UAF) with a selection of catchment descriptors. From the results
tn{UAF) is only weakly correlated with the majority of descriptors with the
strongest relationships evident for n(1+URBEXT), tn(AREA) and (n(SAAR).
Interestingly there is a significant negative correlation (0.05 level) between
En(UAF) and £n(AREA) and between En{1+URBEXT) and ¢n{AREA) which is
likely related to the fact that the most heavily urbanised catchments are also
small catichments, especially those located in the east of the country around the
Greater Dublin Area, where catchments draining from the Wicklow mountains, for
example, tend to be small and heavily urbanized.

Taking the above relationships on board a number of approaches to modeling
UAF were examined beginning with the basic model form of:

in(UAF) = gén(l + URBEXT) (Eqn.27)

The model was fitted using weighted least squares (WLS) regression with the
weights proportional to the urban extent, with more weight given to data from
more urbanised catchments. The resulting calibrated model is:
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en(UAF)= 1.482En(1+URBEXT) (Eqn.28)

And in its multiplicative form:
UAF = (1 + URBEXT)"* (Eqn.29)

The model returned an r? (in £n space) of 0.300, a standard error of 0.735 and a
Factorial Standard Error of 2.085. The coefficient 1.482 has a standard error of
0.139. The model has the advantage of decreasing to 1 when URBEXT
decreases to zero and returns a value of 2.793 when URBEXT reaches a
maximum of 1 (fully urbanised catchment). The value of g in this model is very
similar to the coefficient derived for the simpler urban model in the FEH which
gave a value of 1.49 (see table 18.1 page 198 in FEH Vol. 3). The high factoriai
standard error also highlights the large uncertainties involved in modelling UAF.
Nonetheless the model represents a theoretically plausible description of the
impact of urbanisation on the index flood and can be interpreted as:

- Urban adjustment factor increases with urban extent
- Urban adjustment factor increases to a maximum of 2.793 when a
catchment is fully urbanised (URBEXT=1)

- Urban adjustment factor decreases to one as URBEXT tends towards
zero.
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Figure 25: Scatter plot matrix showing the relationship of {n{UAF} with selected catchment
descriptors
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When the UAF is applied to scale up the rural Qmed predictions a slight
improvement is made when the full urban dataset is considered increasing the r?
for the rural model from 0.897 to 0.909 (fn scale), however more substantial
improvements are evident when only catchments with an URBEXT of greater
than 0.04 are considered, with r* (£n scale) values increasing from 0.728 to 0.787
following adjustment. Furthermore the improvement following adjustment is also
substantial for catchmenis with an URBEXT of over 0.07 showing an r?
improvement from 0.784 to 0.834 following adjustment. Figure 26 shows the fit
between observed Qmed for urban catchments and UAF adjusted predictions. A
significant improvement is evident, particularly for the outlying stations identified
above, with the exception of st08005 which remains significantly underestimated.

Additional models used in modelling UAF involved the addition of an area term to
account for the fact that small catchments draining from the Wicklow mountains
tend to be the most heavily urbanised. However, the adjustment factors and
coefficient factors derived did not make strong hydrological sense. Additionally it
was not possible to consider a permeable catchment adjustment (urbanisation
tends to have a greater effect on permeable catchments) due to the very small
number of such stations in the available dataset. It is advised that gauges are
established in such catchments as a matter of priority.
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Figure 26: UAF Adjusted Qmed plotted against observed Qmed
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5. Improving Model Performance by Data Transfer

Even though the rural model selected for use marks an improvement on previous
approaches for Ireland, the uncertainty ranges are still large and every effort
should be made to adjust the Qmed values derived using the descriptor model
with observed data available from similar catchments.

In terms of adjusting model predictions based on the transfer of information from
gauged sites there has been a lot of recent debate within the literature as to
whether adjustments should be made using information from catchments that are
geographically close to the site of interest (subject site), or from catchments that
are hydrologically similar (analogue catchments), in terms of key descriptors, but
located anywhere within the study domain. Previous work has tended to highlight
the strong clustering of residuals in regression models and to use this to
underscore the recommendation to use local data in Qmed adjustments.

In a comprehensive assessment of the FEH statistical method for adjusting
Qmed values, Morris (2003) found that inappropriate adjustment of QMED using
donor and analogue catchments to be a potential source of error. Morris (2003)
suggested that the selection of gauges for the transfer of information should be
based on catchment similarity using key catchment descriptors. However, the
selection and use of analogue catchments is subjective and the choice of
catchment greatly affects the Qmed estimate. Additionally, Morris (2003)
concluded that consideration of whether the target and donor catchments are
located on the same river network or not (on-line or off-line) could potentially help
to reduce prediction errors further. In contrast Kjeldsen ef al. {2008) suggest that
a method where the weight is based on geographical distance should be the
preferred option, rather than a method where the choice of donor is based on
catchment similarity

Within the Flood Studies Update for Ireland, Chapter 4 compared four
approaches to improving estimates of Qmed using a subset of data. Comparative
results of adjustment procedures found the use of donor sites to be the most
useful for adjusting Qmed regression estimates. A donor site is considered {o be
a gauging station that is on the same river as a subject site and either upstream
or downstream from it. From the work conducted in Chapter 4, the selection of a
downstream gauge(s) is most appropriate for data transfer in adjusting Qmed
estimates. This work also highlights that the selection of upstream gauge(s) also
performs well and performs better than the use of analogue sites.

5.1 Adjustment using Geostatistical Methods

In addition to the traditional approaches discussed above and in Chapter 4,
Grover et al (2002) highlight that the performance of global regression models
can be improved by mapping regression residuals using geostatistical methods
and using these mapped residuals to adjust Qmed estimates at point locations.
Therefore, as an alternative approach this section aims to:
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+ Use geostatistical mapping to explore the spatial pattern of mapped
residuals and to identify potential regions in the study domain where the
selected model tends to overestimate or underestimate the true value of
£n{Qmed).

« Explore the usefulness of the geostatistical mapping of residuais for
adjusting Qmed

By using geostatistical methods to interpolate and map model residuals, Qmed,
as estimated from the regression model can then be corrected by:

Qmedcor o Qmedafirzrral (5) (Eqn‘30)

where & is the interpolated error term. In its £n reduced additive form the global
regression model can be corrected by adding the error term to the predictions of
tn(Qmed). In this work an interpolated residual map was constructed for the
selected seven variable all rural model. Regression residuals were interpolated
using a number of interpolation techniques including Kriging, Spline Interpolation
and Inverse Distance Weighting. Based on the assessment of a small validation
set the Inverse Distance Weighting (IDW) technique was found to be the most
appropriate.

The IDW function determines interpclated values using a linear weighted
combination of a set of sample points. The weight assigned to each is a function
of the distance of an input point from an output cell location. The greater the
distance, the less influence the point has on the output value. In this work a fixed
radius of 55 km was used to select input stations for modelling the £n(residuals).
Figure 27 shows the interpolated residual map, areas of under-estimation are
shown in red, while the grey areas represent over-estimation of fn{Qmed).
Evidence of clustering of model error is evident with areas of overestimation (red)
shown to occur in the south east, much of the north west, the mid west and the
south west. On the contrary areas of underestimation (blue) are evident for much
of the east and south of the country. In order to further refine models for these
areas it is essential that monitoring of catchment hydrology is continued and
where residuals are large that more monitoring stations are established.

In order to extract the correction values from the interpolated map, the points of
interest (i.e. the validation stations) were overlaid and the interpolated
En{residuals) extracted. This error was then used to adjust the predictions from
the rural €n(Qmed) model. The scatter plot showing the IDW adjusted £n{Qmed)
V's observed &n{Qmed) is shown in Figure 28. The r’ increases from 0.909
before IDW adjustment to 0.912 following adjustment.
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Figure 27: IDW interpolated residual map from the rural {n(Qmed) model. -
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5.2 Discussion on Geostatistical Mapping for Qmed Adjustment

While they are becoming more common place in flood hydrology, one risk of the
use of automated methods for adjusting Qmed is that it overwrites the use of
experience and subjective, locally informed decision making in flood hydrology,
where there is scope to consider many factors in deriving adjustments, e.g. the
degree of similarity between the gauged and subject catchments, the likely
quality of the gauged estimate of Qmed and the use of a single or indeed multiple
donors based on combinations of selection procedures. Additionally, the
automated method for adjusting Qmed using geostatistical mapping does not
allow for residuals to be mapped up and down the river system which is in line
with the ‘nested’ approach recommended from Chapter 4 in using downstream or
upstream ‘pivotal’ gauges. That said, the inverse distance weighting is likely to
weight nearby gauges on the same stream highly as the geographical distance
between centroids of catchments located on the same river network are generally
small. Finally, there is a need for further investigations into scale considerations
when using automated approaches with a key question arising as to whether it is
appropriate to use data from a small tributary to adjust Qmed values for a large
main river and vice versa, such issues can arise when interpolating across land
rather than up and down river networks.

in conclusion, the geostatistical approach offers the potential of investigating the
spatial characteristics of model residuals and of adjusting Qmed estimates. The

52



work described here is successful in improving model performance, however, it is
critical that the user ‘owns’ the estimates of Qmed that they produce and as such
it is advocated that the user adopt the most appropriate method for the situational
context in order to adjust derived values of Qmed.

6. Example Application of FSU Methodology

In order to provide an example application of the methodology derived for index
flood estimation in ungauged catchments st26002 The Suck at Rockwood was
selected. This station has a Qmed of 56.56 cumecs and a polygon area of 641.45
km? but is treated as an ungauged location for illustrative purposes here. The
following provides a step by step guide to deriving an estimate for the index flood
at this location.

e Step one: Derive coordinates for ungauged location:

In this case the caichment centroid has an easting of 172050 and a northing of
270500.

¢ Step two: Derive catchment descriptor information:

Original Descriptor Value €n Transformed Descriptor Value

POLYGON AREA 641.451 €n(Area) 6.464
DRAIND 0.792 €n(DRAIND) -0.224
$1085 0.500 €n(S1085) -0.693
SAAR 1067.030 en(SAAR) 6.973
URBEXT 0.003 én(1+URBEXT) 0.003
FARL 0.979 en(FARL) -0.021
BFlsoils 0.604 en(BFlsoils) -0.505
ARTDRAIN2 0.000 €n(1+ARTDRAIN2) 0.000

Table 16: Original and £n Transformed descriptors for st26002,
o Step three: Apply the rural Qmed model using Equation 15 above:

Omed =1.237X107° AREA" BFIsoils *** SAAR'** FARL**" DRAIND"*"!
S1085%'% {1+ ARTDRAIN2)™*™®

The substitution of values from Table 16 into Equation 15 gives a Qmed value of
58.93 cumecs, an overestimation of 2.37 cumecs.

o Step four: Apply the Urban Adjustment Factor using Equation 29
above

UAF = (1+URBEXT)**
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By substituting the relative information from Table 16 an Urban Adjustment
Factor of 1.004 is returned giving a UAF adjusted Qmed value of 59.158 cumecs.

o Step five: Transfer data from gauged locations to improve model
prediction

Transfer data from gauged locations to improve model prediction using the
methods described in Chapter four or the geostatistical approach using Inverse
Distance Weighting (IDW) described above. The approaches derived in Chapter
4 are used to modify the regression estimate at the subject site by the ratio of the
observed Qmed at a donor or analogue site to the regression estimate of Qmed
at the donor or analogue site. The equation for adjusting Qmed at the subject site
is given as:

Omed * rural mod el

Omed “ rural mod el

Omed’® = Omed ‘1[ (Eqn. 31)

where QOmed’is Qmed at the subject site and Qmed“is Qmed at the donor site.

Where an analogue catchment is used the superscript d is replaced by a for
analogue. Table 17 provides the results of adjustment procedures.

Adjustment Approach Station Number Qmed (cumecs) Adjusted Qmed Factorial Difference

Qmed Rural Model 58.93

Qmed UAF adjusted 59.16 1.05
Donor up_1 st26008 24.20 54.70 0.97
Donor down_1 st26005 93.20 53.90 095
Donor_down_2 st26007 88.20 59.70 1.06
Analogue st30007 62.90 75.10 133
IDW Interpolated 56.95 1.01
Observed Qmed 56.56

Table 17: Comparison of adjustment procedures for st26002. Donor up_1 and Donor
down_1 etc. refer to the first or second station upstream or downstream.

For the particular example used the final modelled Qmed value of 56.95 cumecs
is returned for the IDW interpolated adjustment procedure. The use of the next
station upstream as a donor site is also very successful. Unfortunately in the real
world situation the flood hydrologist will not be able to compare with observations
and local hydrological experience should be used in deciding which adjustment
method to use.
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Appendix 1 Summary Statistics for the full dataset
CENTE: Catchment Centroid Easting

CENTN: Catchment Centroid Northing

AREA: Polygon Area

Qmedrural: Qmed as modeled by the alf rural model (Equation 15)
UAF: Urban Adjustment Factor as modeled by Equation 29

AdjRural: UAF adjusted Qmedrural value
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